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The deformation of a cavitation bubble in shear and extensional flows is studied
numerically. The Navier–Stokes equations are solved to observe the three-dimensional
behaviour of the bubble as it grows and collapses. During the collapse phase of the
bubble, two re-entrant jets are observed on two sides of the bubble. The re-entrant
jets are not the result of interaction with a solid wall or free surface; rather, they
are formed due to interaction of the bubble with the background flow. Effects of the
viscosity, surface tension and shear rate on the formation and strength of re-entrant
jets are investigated. Re-entrant jets with enough strength break up the bubble into
smaller bubbles. Post-processing and analysis of the results are done to cast the
disturbance by the bubble on the liquid velocity field in terms of spherical harmonics.
It is found that quadrupole moments are created in addition to the monopole
source.

1. Introduction
Cavitation occurs in many applications, such as liquid injectors, propellers and

valves. Specifically, it is more common that cavitation inception occurs near or on
solid boundaries (Brennen 1995). This is due to the pressure drop caused by rapid
change in the flow direction. In addition, on these surfaces, inside the boundary
layers, high levels of shear stress are present, which may lead to a stress-induced
cavitation (Joseph 1998; Dabiri, Sirignano & Joseph 2007). In some cases, such as
liquid injectors with sharp inlet corners, the boundary layer separates from the wall
right behind the sharp corner. Therefore, it is of interest to study the interaction of
cavitation bubbles with a shear flow.

Dynamics of asymmetrical cavitation bubbles have been under investigation for a
long time. Most notably, cavitation bubbles near solid boundaries have been studied
by many researchers (Lauterborn & Bolle 1975; Blake & Gibson 1987). However,
most of the numerical studies are limited to the boundary element method. This
is mainly due to the advantage this method offers in reducing the dimensions of
the problem by one. However, the drawback is that the method is limited to either
irrotational flows or Stokes flows. Therefore, the case of a rotational flow at finite
Reynolds number cannot be studied by this method.

† Email address for correspondence: sirignan@uci.edu
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Navier–Stokes solutions of cavitation bubbles are very limited. Popinet & Zaleski
(2002) studied the effects of viscosity on creation of re-entrant jets during collapse
of a cavitation bubble near a rigid boundary. They have solved the Navier–Stokes
equations in an axisymmetric problem and have showed that large viscosity prevents
jet impact inside the bubble. Yu, Ceccio & Tryggvason (1995) also examined solutions
of Navier–Stokes equations for a bubble in viscous liquids. They considered the
collapse of a bubble in a shear flow near a rigid wall to simulate the condition of
cavitation bubbles inside a wall boundary layer. They found that, if the shear rate is
large enough, the creation of the re-entrant jets will be suppressed.

To study the deformation of bubbles in shear flow, a fundamental problem has
been considered here. A spherical bubble is placed initially in a simple shear flow
and/or extensional flow; pressure drops for half a cycle and, in the next half cycle,
recovers to its initial value. During this time, the bubble grows as it deforms due to
strain in the flow. Then, as the pressure recovers, the bubble collapses and rebounds.

In the next section, governing equations and numerical methods are explained.
Then, a benchmark problem is presented to validate the code and finally, results of
the bubble dynamics are presented and discussed.

2. Governing equations
We consider the deformation of a cavitation bubble in a viscous liquid. The

governing equations for this three-dimensional problem follow:

ρi

(
∂u
∂t

+ u · ∇u
)

= −∇p + ∇ · T + σκδ(d)n, (2.1)

where u, ρ and μ are the velocity, density and viscosity of the fluid, respectively.
Subscript i could represent either liquid (l) or gas (g) phase and T is the viscous stress
tensor. The last term represents the surface tension as a force concentrated on the
interface. Here, σ is the surface tension coefficient, κ is twice the local mean curvature
of the interface, δ is the Dirac delta function, d represents the distance from the
interface and n corresponds to the unit vector normal to the interface. The continuity
equation for the liquid is

∇ · u = 0 (2.2)

and for the gas inside the bubble

∇ · u = − 1

ρ

Dρ

Dt
. (2.3)

The bubble is assumed to consist of a non-condensable ideal gas going through
a polytropic process, i.e. p ∝ ρn, where n is the polytropic exponent. For the small
bubbles and low frequencies of pressure variation, the process is closer to isothermal
because the thermal diffusion time scale is smaller than the pressure variation time
scale. On the other hand, for large bubbles and high frequencies, the process is closer
to adiabatic. The value of n has been provided by Plesset & Prosperetti (1977) as a
function of two dimensionless parameters. For lower frequencies, which is the case in
this study, the value of n depends only on one of the parameters, G = R2

oω/Dg , where
ω = 2π/T is the frequency and Dg is the thermal diffusivity of the gas. In this study,
G =O(1) and therefore the process can be considered isothermal (n= 1). The density
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variation can be related to pressure variation as

1

ρ

Dρ

Dt
=

1

np

Dp

Dt
, (2.4)

where D/Dt represents the Lagrangian derivative. We consider the cases where the
collapse velocity of the bubble is much smaller than the speed of sound in the bubble
and the bubble density can be assumed to be uniform. The value of this uniform
density, ρg , is related to the average pressure inside the bubble, pg , through the
polytropic equation, pg ∝ ρg

n. By relating the bubble density to the average pressure
inside the bubble instead of the local pressure, one can suppress propagation of
acoustic waves inside the bubble. These waves occur on a time scale that is not of
interest here. Therefore, the continuity equation for the gas phase is rewritten as

∇ · u = − 1

np̄g

dp̄g

dt
(2.5)

inside the bubble.

3. Numerical implementation
A finite-volume method on a staggered grid is used to discretize and find the

numerical solution of the unsteady Navier–Stokes equations. The convective and
advective terms are discretized using the QUICK scheme (Hayase, Humphrey &
Greif 1992), and the SIMPLE algorithm, developed by Patankar (1980), is used to
solve the pressure–velocity coupling. The time integration is accomplished using the
second-order Crank–Nicolson scheme.

A level-set method is used to capture the interface and model the surface tension,
which has been developed by Osher and coworkers (e.g. Sussman et al. 1998 and
Osher & Fedkiw 2001). The level-set function, denoted by θ , is defined as a signed
distance function. It has positive values in the gas phase and negative values in the
liquid phase. The magnitude of the level set at each point in the computational field
is equal to the distance from that point to the interface.

Time evolution of the level-set function is governed by

∂θ

∂t
+ u · ∇θ = 0. (3.1)

Using the level-set function, one can define the fluid properties as

ρ = ρl + (ρg − ρl)Hε(θ), (3.2)

μ = μl + (μg − μl)Hε(θ), (3.3)

where subscripts l, g correspond to liquid and gas, respectively. Hε is a smoothed
Heaviside function defined as

Hε =

⎧⎨
⎩

0 θ < −ε,
(θ + ε)/(2ε) + sin(πθ/ε)/(2π) |θ | � ε,
1 θ > ε,

(3.4)

where ε represents the half-thickness of the interface, and has been given the value
of 1.5 times the grid spacing. Using the definition of the Heaviside function, one can
combine the continuity equations for liquid and gas phases (see (2.2) and (2.5)) into
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one equation:

∇ · u = − 1

np̄g

dp̄g

dt
Hε(θ). (3.5)

This single equation treats the gas inside the bubble as a compressible phase and the
liquid as an incompressible phase.

4. Spherical cavitation bubble
In order to check the accuracy of the code, a comparison is made with the solution

of spherical bubble growth and collapse. The radius of the bubble, R, is governed by
the Rayleigh–Plesset–Poritsky (RPP) equation (Plesset & Prosperetti 1977):

RR̈ +
3

2
Ṙ2 =

1

ρl

{
Pg − P∞ − 2σ

R
− 4μl

R
Ṙ

}
, (4.1)

where P∞ is the pressure at infinity, and Pg is the pressure inside the bubble at
the interface and is related to the bubble volume through a polytropic equation
Pg = Po(Ro/R)3n, where Po is the pressure inside the bubble at the initial equilibrium
radius, Ro. The bubble is initially at equilibrium and starts to grow, collapse and
rebound as the pressure varies. The pressure variation is given by

P∞ =

{
Po∞ − ΔP

2
[1 − cos(2π t

T
)] t < T ,

Po∞ T � t .
(4.2)

Using the initial radius of the bubble, Ro, as the length scale and Ro

√
ρl/Po∞ as the

time scale, one can derive the dimensionless form of the RPP equation as

R�R̈� +
3

2
Ṙ�2

=P �
g − P �

∞ − 2

Wep

1

R�
− 4

Rep

Ṙ�

R�
, (4.3)

where Reynolds number, Weber number and dimensionless pressures are defined as

Rep =
Ro

√
ρlPo∞

μl

, Wep =
RoPo∞

σ
, P �

g =
Pg

Po∞
, P �

∞ =
P∞

Po∞
. (4.4)

A three-dimensional calculation is performed, in which the centre of mass of the
bubble is placed at the origin initially and stays there due to symmetry. Also, due
to spherical symmetry in the problem, only one eighth of the domain is solved on a
Cartesian grid with symmetrical boundary conditions on x–y, y–z and x–z planes. On
the three other faces of the computational domain, time-varying pressure is applied.
Since the boundaries of the domain are at finite distance, pressure from the solution
of the RPP equation is calculated at the position of the boundary and applied as the
pressure boundary condition.

The computational domain consists of 503 grid points with 10 grids across the
initial radius of the bubble. Figure 1 shows the pressure variation and the resulting
radius of the bubble predicted by the RPP equation and the Navier–Stokes solution.
Dimensionless parameters are Rep = 70.71, Wep =500, (ΔP )/(Po∞) = 0.8, T � = 7.071.

5. Bubble in shear or extensional flows without pressure variation
We are interested in the interaction of the cavitation bubbles with a simple shear

flow. Therefore, we initially considered an incompressible bubble in a simple shear
flow, u = ksy x̂. The bubble is placed at the centre of cubical domain. Due to symmetry
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Figure 1. Radius of a spherical bubble and the applied pressure.

around the x–y plane and anti-symmetry around the x–z plane, only one quarter of the
cubical computational domain is solved. The symmetry and anti-symmetry conditions
also imply that the centre of the bubble will remain at the origin. The boundary
conditions are as follows: on the x = xmin plane, a linear profile for x-component
of velocity, u = ksy, is specified; on the y = ymax plane, a constant x-component of
velocity, u = ksymax , is specified. On the y = 0 plane, an antisymmetric boundary
condition is applied, which is extracted from the following conditions:

u(−x, −y, z) = −u(x, y, z), (5.1)

v(−x, −y, z) = −v(x, y, z), (5.2)

w(−x, −y, z) = w(x, y, z). (5.3)

All other velocities have zero gradients in the direction normal to the boundaries.
For this problem, a different set of Reynolds number and Weber number can be

defined based on shear rate or normal strain rate times the initial radius of the bubble
as the velocity scale:

Res =
ρlkR2

o

μl

, Wes =
ρlk

2R3
o

σ
, (5.4)

where k represents the shear rate and/or the normal strain rate. The steady shape
of the bubble and velocity field for Res = 1 and Wes =0.05 are shown in figure 2.
The deformation factor D (difference between long and short axes of the bubble
divided by their summation) at steady state for the simple shear cases is 0.0489. For
a small capillary number, Ca = (Wes)/(Res) = (μlkRo)/σ , the steady state value of
the deformation parameter is almost equal to capillary number, i.e. D ∼= Ca. The
difference between current numerical results with experiments (e.g. Rust & Manga
2002) falls within the range of experimental uncertainty. Two circulating regions
which are driven by the shear on the surface of the bubble are observed inside the
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Figure 2. Steady shape of an incompressible bubble at Res =1. Wes =0.05 in (a) simple
shear flow, (b) normal-strain flow and (c) combined flow.
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Figure 3. Schematics of shear and extensional flows. An initially spherical bubble is shown
at the centre of the computational domain in addition to the far-field flow conditions.

bubble. These regions, which appear on top and bottom of the bubble, have the same
vorticity direction as the simple shear flow.

Similar calculations are performed with normal strain and combined shear and
normal strains in the background flow. The strain rates are ks and kn and have the
same value as ks in the simple shear flow case. Results are shown in figure 2. Two
similar recirculation regions formed in the simple shear flow are also present in the
cases with combined shear and normal strain flows. In addition, two smaller regions
of recirculating flow can be seen inside the bubble on the left and right, which have
vorticities opposite of the two larger vortices and the background flow.

6. Cavitation bubble with sinusoidal pressure variation interacting with shear
or extensional flows

In this section, a cavitation bubble in simple shear flow, a normal strain flow or a
combination of these flows is again considered. However, now the pressure will vary
with time. A schematic of the problem is shown in figure 3. The bubble is initially
spherical and is located at the origin. The initial velocity field is specified as u = ksy x̂
for shear flow, u = knx x̂ − kny ŷ for extensional flow or u = (ksy + knx)x̂ − kny ŷ for a
combined shear and extensional flow. The boundary conditions for shear flow are the
same as explained in § 5, except that on x = xmin, a zero normal gradient is applied
instead of applying a linear velocity profile. The reason for this change is that in the
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Case Res Wes Rep Wep k� T � ΔP � Flow type

1 0 0 70.71 500 0 7.071 0.8 Stagnant
2 2.5 0.625 70.71 500 0.03535 7.071 0.8 Shear
3 5.0 2.5 70.71 500 0.07071 7.071 0.8 Shear
4 7.5 5.624 70.71 500 0.10606 7.071 0.8 Shear
5 10.0 10.0 70.71 500 0.1414 7.071 0.8 Shear
6 5 0.3535 70.71 25 0.07071 7.071 0.8 Shear
7 1.0 0.05 14 9.8 0.07143 21 0.9796 Shear
8 1.0 0.05 14 9.8 0.07143 21 0.9796 Normal strain
9 1.0 0.05 14 9.8 0.07143 21 0.9796 Combined

10 4 0.2667 40 26.67 0.1 30 0.99 Shear

Table 1. List of parameters for cavitation bubble in strained flow.

case of the compressible bubble, the bubble volume will change with time. This will
create a net out-flux or in-flux on the domain. To allow this flux to be distributed
over all the surfaces of the computational domain, a Neumann boundary condition
is needed rather than a Dirichlet boundary condition. Dimensionless parameters are
the same as in § 4. In addition, the strain rate, k, either shear or normal, is provided
in a dimensionless form as

k� = kRo

√
ρl

Po∞
. (6.1)

Table 1 shows a list of dimensionless parameters for the cavitation bubble and the
type of the background flow. Unlike the spherical cavitation bubble in stagnant flow
(§ 4), where the pressure on boundaries can be calculated from the RPP equation, in
the strained flow, the pressure on the boundary cannot be calculated having only the
value of pressure at infinity. Therefore, in this section, the pressure profile shown in
figure 1 is applied directly on the boundary. To assess the effects of this change in
the boundary conditions, volume of the bubble is plotted for two cases in figure 4.
The dashed line in figure 4(a) represents the case where the boundary condition for
pressure is calculated from the RPP solution; this is, in fact, the same calculation
as showed in § 4. The solid line represents the solution where the pressure is applied
directly on the boundary (Case 1). Of course, there are differences between these two
solutions. Case 1 has a larger value of the maximum volume. Since, in this case,
the pressure is applied on the boundary at a finite distance from the bubble, both
the pressure gradient outside the bubble and the rate of growth of the bubble will
be larger. Whereas, for the other case, the pressure variation is applied at infinity
and the pressure value on the boundary is extracted from the solution of the RPP
equation. The other difference is in the period of oscillation, which is smaller for
Case 1. Similarly, this can be explained by considering the boundary conditions.
Since the accelerated mass between the bubble surface and the boundary is smaller
than the accelerated mass between bubble surface and infinity, and the period of
oscillation increases with the mass, one should expect a larger period for Case 1
compared to results of § 4. In another explanation, the boundary condition from the
RPP equations results in a smaller pressure gradient over similar domains. This causes
a smaller acceleration of liquid, and therefore, a longer period of oscillation for the
RPP solution.

In figure 4(b), the volume of the bubble is shown for Cases 1–5. Note that for these
five cases, all the parameters are the same and only the shear rate is changed. As it
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Figure 4. (a) Effect of boundary condition on volume of a spherical cavitation bubble in a
stagnant liquid; pressure variation applied directly on the boundary (solid line) and pressure
variation from the RPP solution (dashed line). (b) Effects of the shear on the bubble volume.

can be seen in figure 4, the shear rate has a negligible influence on the volume of the
bubble. Still, it can be observed that the increase in the shear rate slightly suppresses
the growth of the bubble.

Figure 5 shows snapshots of the cavitation bubble from the instant it reaches its
maximum volume until it collapses for Case 3. Figure 5(a) shows the bubble at its
maximum volume. This maximum volume occurs slightly after the pressure reaches
its minimum and starts to recover. This is due to the inertia of the liquid. At the
maximum volume, the bubble has an ellipsoidal shape, which is a result of the shear
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Figure 5. Pressure contours and velocity field during collapse of cavitation bubble in
shear flow for Case 3.

flow. As the bubble collapses, two regions of high pressure are formed on upper
right and lower left sides of the bubble. These high pressure regions later lead to
the creation of two flat regions, and later concave regions, on the surface of the
bubble. This finally results in the formation of two re-entrant jets on the sides of the
bubble.

The shapes of the bubbles for Cases 1–5 are shown side by side in figure 6. The
large deformation of the bubbles can be explained by considering the Weber number.
Since in these calculations the Weber number, Wep , is relatively large, the surface
tension is not strong enough to keep the bubble in a spherical shape.

As expected, the deformation of the bubble from a spherical shape at its maximum
volume is larger for cases with higher shear rate. Also, two re-entrant jets are formed
on the two sides of the bubble.
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Figure 6. Effect of shear on the bubbles’ shape during collapse. (a–e) k� is the dimensionless
shear rate increasing from left to right. Cross sections of the bubbles are shown at different
instants of time from the instant of maximum volume on top until the collapse of the bubble
on the bottom. Re = 70.71,We = 500.

The deformation of cavitation bubbles from the spherical shape has been quantified
through calculation of a dimensionless surface to volume ratio for bubbles:

surface-to-volume ratio =
A

(6
√

πV )2/3
, (6.2)

where A and V are the surface area and volume of the bubble, respectively. This
is the surface-to-volume ratio normalized by the surface-to-volume ratio of a sphere
with the same volume. Therefore, a spherical bubble will always have a dimensionless
surface-to-volume ratio of one, and as the bubble deviates from spherical shape,
this value increases. Figure 7 shows the surface-to-volume ratio as a function of
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dimensionless volume of the bubble for Cases 1–5. As can be seen, the deformation
of the bubble increases with the shear rate and it has the largest value during the
collapse of the bubble for each case. Ideally, one expects Case 1 to have a constant
value of surface-to-volume ratio of one.

Surface tension effects are studied by considering Case 6, which is similar to Case 3,
but with larger surface tension. In this case, the bubble deformation is very similar
to Case 3. However, the collapse occurs earlier than Case 3. Since the pressure drop
across the interface is larger than Case 3, both the pressure difference in the liquid
and the growth rate of the bubble have to be smaller. The shape of the bubble during
collapse and rebound is shown in figure 8. It can be seen that the re-entrant jets
collide and create a hole in the bubble. However, in this case, the bubble does not
break up.

The calculation for Case 6 is also performed on a finer grid of 200 × 100 × 100
grid points and results are compared to the case with regular grid of 100 × 50 × 50
grid points in figure 9. The cross-section of the bubble in two calculations match with
each other closely. Also, another calculation is performed with a smaller time step to
ensure the sufficiency of time resolution (figure 9). The dependency of the solution
on the size of the computational domain is checked by increasing the domain size
by 50 % in each direction and keeping the grid spacing fixed. This change in the
size of computational domain caused a 1 % increase in the maximum volume of the
cavitation bubble.

Another case is shown in figure 10, which refers to lower Reynolds number and
Weber number. Even though re-entrant jets are formed in these cases, they do not
impinge on each other due to the strong surface tension. Note that the values of
Reynolds and Weber numbers based on the shear, Res, Wes , for this case are the
same as one of the calculations for incompressible bubble in shear flow in § 5. By
comparing the results with the incompressible bubble in shear flow, one can observe
that the shear flow does not deform the bubble severely. Moreover, the pressure
change alone, which results in the growth and collapse of the bubble, does not cause
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any deviation from the spherical shape of the bubble. Therefore, it is the combined
effect of shear and pressure variation that results in such a large deviation from
spherical shape.

In Case 10, shown in figure 11, the impingement of re-entrant jets results in the
break-up of the bubble. First, a hole is created inside the bubble and then the gas
threads, connecting the top and bottom of the bubble, break up and create satellite
bubbles.

It can be seen that the break-up of the cavitation bubble is essentially different
from the break-up of a non-cavitating (i.e. incompressible) bubble. In the case of an
incompressible bubble, the bubble stretches in the direction of principal stress, i.e.
45ofrom the velocity for small deformations. However, in our case, the bubble initially
extends in the same direction as an incompressible bubble, but during the collapse
the bubble retracts and the re-entrant jets form. In the break-up of an incompressible
bubble, the capillary effects cause the necking and break-up of the bubble after it
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Figure 11. Shape of the bubble during collapse and rebound for Case 10. Creation and
impingement of re-entrant jets results in the break-up of the bubble. t∗ = 68.13 (a); 68.78 (b);
68.95 (c); 69.03 (d); 69.07 (e); 69.16 (f ).

has been stretched by the shear in the flow. Whereas, here, the capillary phenomenon
does not play an important role in the break-up process. It is rather the inertia of
the re-entrant jets that breaks up the bubble. Still one can say that the capillary
effects become important in the break-up of the gas threads that are formed after the
re-entrant jets collide.

A case with a normal strain rate has also been considered. Figure 12 shows the
shape of the bubble from the instance of its maximum volume until its collapse and
rebound. This case has flow parameters similar to Case 7. However, the background
flow is extensional (u = kx x̂ − ky ŷ), with magnitude of the strain rate same as in
Case 7. In this case, the bubble deforms during growth phase and elongates in the
x direction. During the collapse of the bubble, a high pressure region is formed
on the right (and left due to symmetry) side of the bubble and re-entrant jets are
formed.

Case 9 has the combined shear and normal strain flow in the background.
Figure 13 shows the shape of the bubble for this case. High pressure zones and
re-entrant jets are still formed.
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Figure 12. Collapse of cavitation bubble in a flow with normal strain for Case 8. Bubble
interface, velocity vectors and pressure coefficient contours are shown in the plane of symmetry
of the bubble.

7. Vorticity generation at bubble interface
In this section, the vorticity field around the bubble is studied. Figure 14 shows the

z -component of the vorticity, ωz, in the plane of symmetry of the bubble for Case 3.
Figure 15 shows the circulation integrals on the plane of symmetry of the bubbles

for Cases 1–5. Circulation is calculated in a region of −2.5 < x < 2.5, −2.3 < y < 2.3
and it is divided into a positive and negative part as

Γ + =

∫
max(ω�

z + k�
s , 0) dx dy, Γ − =

∫
− min(ω�

z + k�
s , 0) dx dy. (7.1)

Note that −ks is the vorticity of the background flow and is subtracted from
the vorticity in the above integral calculation. The vorticity, ωz, has been non-
dimensionalized in the same way as the shear rate. As it can be seen in this figure,



108 S. Dabiri, W. A. Sirignano and D. D. Joseph

0.200.25

x

y

–2 –1 0 1 2

–2

–1

0

1

2

(a)

x
–2 –1 0 1 2

–2

–1

0

1

2

x

y

–2 –1 0 1 2

–2

–1

0

1

2

x
–2 –1 0 1 2

–2

–1

0

1

2

t/T = 0.9464, t* = 19.87

2.0

1.5

t/T = 1.138, t* = 23.90

4

3

2

t/T = 1.164, t* = 24.44

1.61.7

1
.8

2.0
1.9

2.2

t/T = 1.212, t* = 25.45

(b)

(d)(c)

Figure 13. Collapse of cavitation bubble in a flow with combined shear and normal strain
for Case 9. Bubble interface, velocity vectors and pressure coefficient contours are shown in
the plane of symmetry of the bubble.

vorticity generation increases with the shear rate in the flow. During the growth of
the bubble, the positive part of the circulation integral, Γ +, becomes larger than
its negative part, which means the net change of circulation in the flow, Γ + − Γ −,
is positive and opposite of the circulation in the background flow. As the bubble
starts to collapse, the difference between Γ + and Γ − becomes less and later Γ −

exceeds Γ +.

8. Spherical harmonics decomposition
Observing the velocity field near the bubbles during growth and collapse, we

found that, in addition to monopole source or sink velocity field and a base shear
flow, there exists a quadrupole velocity field that is produced by antisymmetrical
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Figure 14. z -component of vorticity field during collapse of cavitation bubble in shear flow
for Case 3. Vorticity levels are ±4, ±8, ±16, . . . times the vorticity of the base flow and
negative-valued contours are dashed.

growth and collapse of the bubble. The velocity field can be expanded in terms of
spherical harmonics to extract more information about the strength of monopole and
quadrupole terms. The reason for using the spherical harmonics to expand the velocity
field is based upon the physical interpretation of these harmonics. The zero-order
harmonic represents a monopole, simple source or sink, in the flow which is created
due to volume change of the bubble. The first-order harmonics represent dipoles,
second-order harmonics represent quadrupoles and so on.

First, the background velocity is subtracted from the velocity field

u′ = u − [(ksy + knx)x̂ − knyŷ]. (8.1)
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Then, the radial component of the velocity field in spherical coordinates, with origin
at the centre of the bubble, is expanded:

u′
r =

∑
n,m

Am
n (t, r)Y m

n (θ, φ), (8.2)

where Y m
n ’s are the spherical harmonics, defined as

Y m
n (θ, φ) =

√
2n + 1

4π

(n − m)!

(n + m)!
P m

n (cos θ)eimφ. (8.3)

Since we are dealing with real numbers for velocity field, the complex exponential
term in the harmonics is replaced by its real and imaginary parts and some of the
coefficients are adjusted to make sure that the harmonics remain orthonormal.

Coefficients Am
n in (8.2) can be found using

Am
n (t, r) =

∫
u′

rY
m
n (θ, φ) dΩ (8.4)

=

∫ π

θ=0

∫ 2π

φ=0

u′
rY

m
n (θ, φ) sin θ dθ dφ, (8.5)

where Am
n is a function of r� and time; we will consider the time dependency of the

harmonics first. In a spherical coordinates with the origin placed at the centre of
the bubble, the radial component of velocity is calculated at r� = 2. Then, the radial
velocity is expanded in spherical harmonics to find coefficients Am

n . Figure 16 shows
coefficients of different harmonics as a function of time. Note that the first-order
harmonics, representing dipoles, are zero due to the symmetry and antisymmetry
conditions in the problem. The dipole is zero because the bubble is not accelerating
relative to the liquid. The zero-order harmonic represents a monopole and can be
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Figure 16. Coefficients of spherical harmonics in the velocity field at r� = 2 for Case 3. Solid
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related to the rate of volume change of the bubble:

dV �

dt �
=

∫
r�2

ur dA = 2
√

πr�2
A0

0. (8.6)

Therefore, positive A0
0 indicates growth and negative A0

0 indicates collapse of the
bubble. It can be seen that the monopole, A0

0, is the dominant component in the
spherical harmonics decomposition. The quadrupoles also have a strong contribution
to the velocity field. Among the three non-zero harmonics of second order, A2s

2 is
the largest one, which represents a quadrupole at 45◦ with x -axis, (φ = 45◦). As it
can be seen, this moment correlates well with the monopole. During growth of the
bubble, A2s

2 is positive indicating the stretch of the bubble in the direction of the
shear. When the bubble is collapsing, A2s

2 becomes negative, which shows a faster
collapse at φ = 45◦. This can be interpreted as a sign of the formation of re-entrant
jets. The largest component of quadrupole always remains in the x–y plane, which is
the plane of shear flow.

In order to visualize the contribution of different harmonics to the velocity field, the
streamlines for Case 6 are shown in figure 17. In the first two images (a) and (b) the
streamlines are shown at an instant of time during collapse of the bubble in the x–y

plane and the x–z plane, respectively. Then, the base shear flow is subtracted from
the velocity field and streamlines are plotted in (c). In the last part (d), the monopole
is also subtracted from the velocity field. This velocity field consists of quadrupoles
and higher-order harmonics.

Spherical harmonics decomposition is performed at different radii in order to
determine the dependency of Am

n on r�. The monopole term, A0
0 is plotted at three

different radii in figure 18. Then, the maximum absolute value of A0
0 is plotted as a
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Figure 17. Streamlines during collapse of the bubble at t∗ = 6.505 in Case 6: (a) streamlines
from velocity field in the z = 0 plane, (b) y = 0 plane, (c) z = 0 plane after subtracting the
base shear flow, (d ) z = 0 plane after subtracting the base shear flow and monopole source.

function of r� in figure 19 Fitting a power law to the data points, we find

A0
0 ∝ r�−1.9985

. (8.7)

One should expect this behaviour since it is a direct result of incompressibility of
the liquid. The second-order harmonic A2s

2 is plotted at three different locations in
figure 20 Two second-order harmonics A2s

2 and A2c
2 are merged into one using

A2
2 =

√(
A2s

2

)2
+

(
A2c

2

)2
(8.8)

and are plotted versus r� in figure 19 for Cases 2–5. As it can be seen, the monopole
is the same for all four cases, which means that the shear rate does not affect the
monopole strength. However, the quadrupole moment varies with the shear rate.
Table 2 lists the equations for fitted power laws for quadrupole moments versus
radius. The exponents are close to four, which is the theoretical value of the exponent
for a velocity field due to a point quadrupole. Since the quadrupole is not applied
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at a point here, and the surface of the sphere, on which the quadrupole moment is
evaluated, is not very far from the bubble, a smaller absolute value of the exponent
is expected. In addition, the velocity field is not irrotational, even after subtracting
the base shear flow. The vorticity in the flow is not confined to the bubble, but rather
it is distributed over the whole domain. For example, in Case 3, the magnitude of
vorticity on the surface of a sphere at r = 2 reaches 39.6 % of the vorticity in the base
flow. Therefore, we cannot expect to find a perfect quadrupole velocity field around
the bubble. The average exponent for quadrupole term for Cases 2 to 5 is found to
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2 for different shear rates in the background flow.

be −3.736. Based on this average value, we define q2
2 as

A2
2 =

q2
2

r�−3.736
. (8.9)

Hence, q2
2 is related to the quadrupole moment. Now, we can investigate the effect of

shear rate in the background flow on the quadrupole moment. Figure 21 shows that
the quadrupole moment is proportional to the shear rate in the flow.
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Case A2
2

2 6.811r�−3.724

3 14.26r�−3.786

4 21.01r�−3.760

5 25.67r�−3.674

Table 2. Dependency of the quadrupole component of the velocity on r�.

9. Conclusion
In this paper, the deformation of a cavitation bubble due to the presence of a simple

shear and/or extensional flow is investigated. The general approach is to understand
the physics of the collapse of a cavitation bubble in shear flow. We are also interested
in learning the ways in which the cavitation bubble affects the flow. The creation
of a monopole and three quadrupoles is one way of influencing the flow; another
method is by creating vorticity in the liquid phase. The deformation of the bubble in
the direction of the background flow during growth results in the creation of high-
pressure regions on sides of the bubble during the collapse. This leads to formation
of re-entrant jets as the bubble collapses. Impingement of re-entrant jets inside the
bubble results in the break-up of the bubble in some cases. The deformation of
cavitation bubble with volume change is much larger than the incompressible bubble
in the same flow environment. This suggests that the interaction between shear (or
normal strain) flow and volume change is very important and can strongly change
the behaviour of the cavitation bubble. A spherical harmonics decomposition of the
velocity field near the bubble shows formation of quadrupoles during the collapse of
the bubble. The strength of the quadrupoles are proportional to the strain rate in the
background flow.
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